Binary symmetric channel

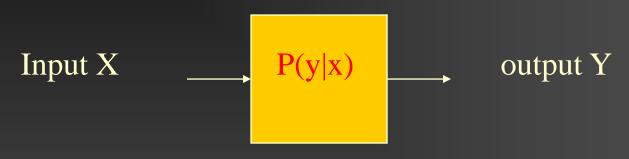
content

- Introduction
 - Entropy and some related properties
- Source coding
- Channel coding
- Multi-user models
- Constraint sequence
- Applications to cryptography

This lecture

- Some models
- Channel capacity
 - converse

some channel models



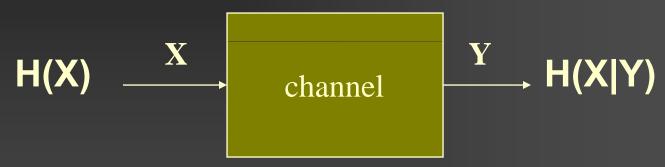
transition probabilities

memoryless:

- output at time i depends only on input at time i
- input and output alphabet finite

channel capacity:

I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) (Shannon 1948)

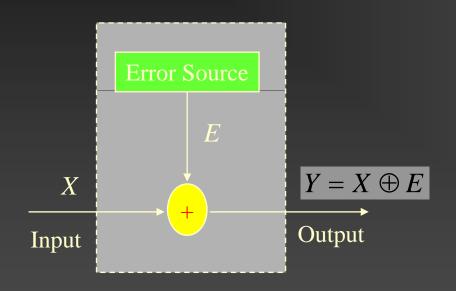


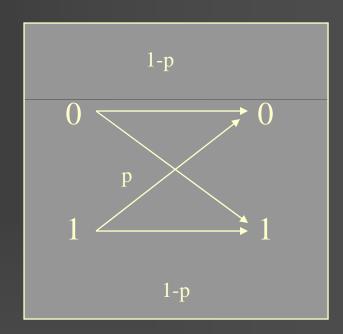
$$\max_{P(x)} I(X;Y) = capacity$$

notes:

capacity depends on input probabilities because the transition probabilites are fixed

channel model: binary symmetric channel





E is the binary error sequence s.t. P(1) = 1-P(0) = p

X is the binary information sequence

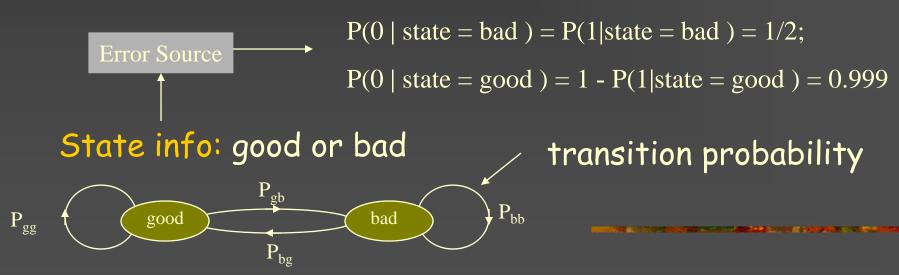
Y is the binary output sequence

burst error model

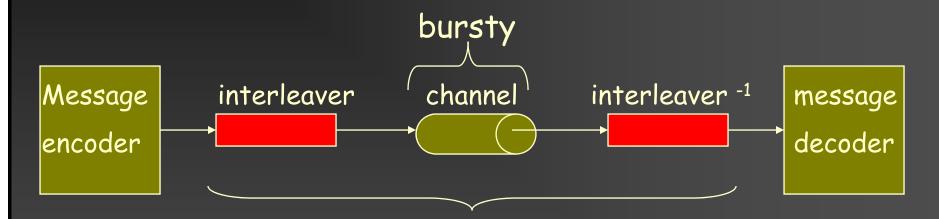
Random error channel; outputs independent

Error Source
$$P(0) = 1 - P(1)$$
;

Burst error channel; outputs dependent



Interleaving:



"random error"

Note: interleaving brings encoding and decoding delay

Homework: compare the block and convolutional interleaving w.r.t. delay

Interleaving: block

Channel models are difficult to derive:

- burst definition?
- random and burst errors?

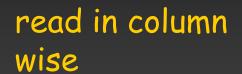
for practical reasons: convert burst into random error

read in row wise

1	0	1	0	1
0	1	0	0	0
0	0	0	1	0
1	0	0	1	1
1	1	0	0	1

transmit column wise

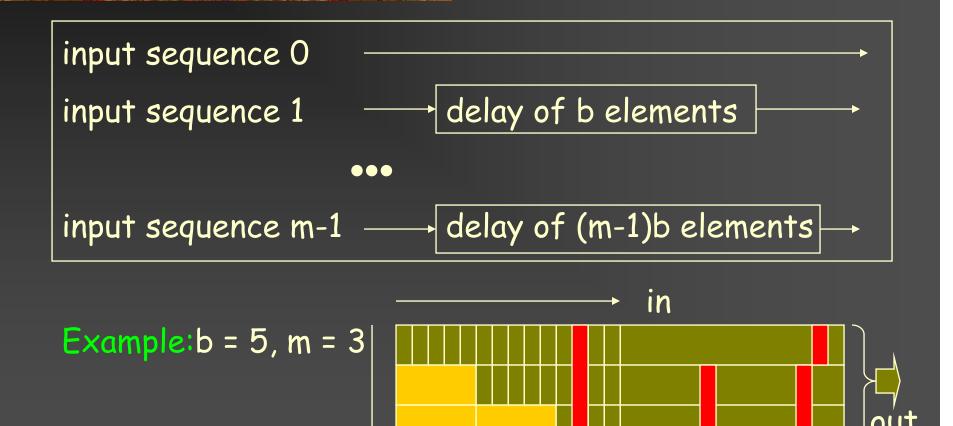
De-Interleaving: block



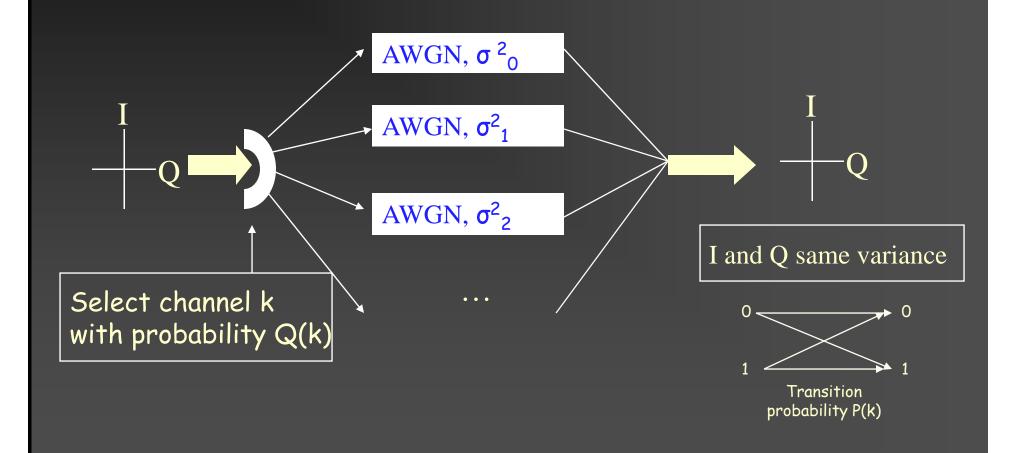
this row contains 1 error

read out row wise

Interleaving: convolutional



Class A Middleton channel model



Example: Middleton's class A

Pr{
$$\sigma = \sigma(k)$$
 } = Q(k), k = 0,1, · · ·

$$\sigma(k) := \left(\frac{k\sigma_{I}^{2} / A + \sigma_{G}^{2}}{\sigma_{I}^{2} + \sigma_{G}^{2}}\right)^{1/2}$$

$$Q(k) := \frac{e^{-A}A^{k}}{k!}$$

A is the impulsive index

 σ_{I}^{2} and σ_{G}^{2} are the impulsive and Gaussian noise power

Example of parameters

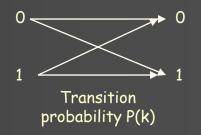
Middleton's class A= 1; E = σ = 1; σ_I / σ_G = 10^{-1.5}

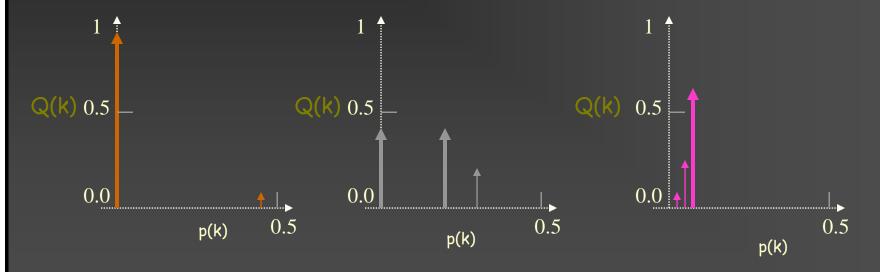
k	Q(k)	p(k) (= transition probability)
0	0.36	0.00
1	0.37	0.16
2	0.19	0.24
3	0.06	0.28
4	0.02	0.31

Average p = 0.124; Capacity (BSC) = 0.457

Example of parameters

Middleton's class A: E = 1; $\sigma = 1$; $\sigma_{I} / \sigma_{G} = 10^{-3}$





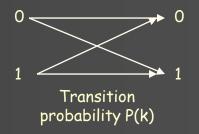
$$A = 0.1$$

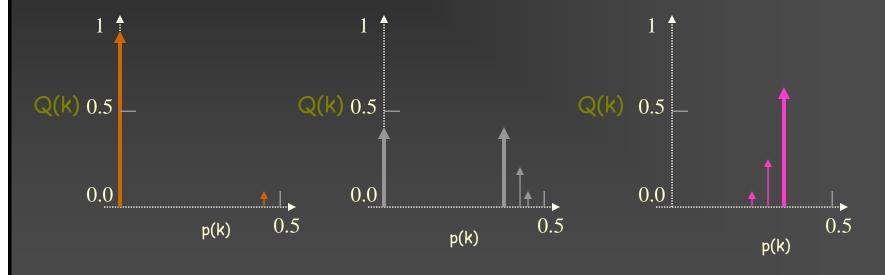
$$A = 1$$

$$A = 10$$

Example of parameters

Middleton's class A: E = 0.01; $\sigma = 1$; $\sigma_{I} / \sigma_{G} = 10^{-3}$



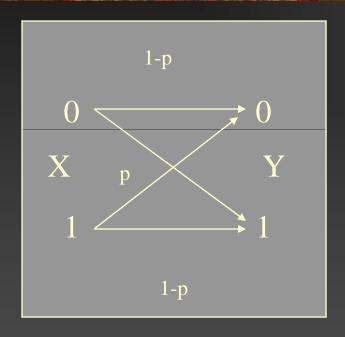


$$A = 0.1$$

$$A = 1$$

$$A = 10$$

channel capacity: the BSC



$$I(X;Y) = H(Y) - H(Y|X)$$

the maximum of $H(Y) = 1$

since Y is binary

$$H(Y|X) = h(p)$$

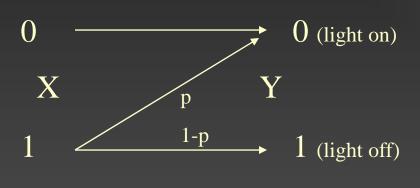
= P(X=0)h(p) + P(X=1)h(p)

Conclusion: the capacity for the BSC C_{BSC} = 1- h(p)

Homework: draw C_{BSC} , what happens for $p > \frac{1}{2}$

channel capacity: the Z-channel

Application in optical communications



$$P(X=0) = P_0$$

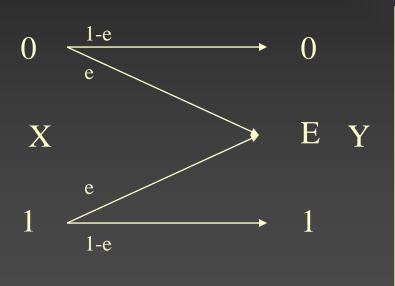
$$H(Y) = h(P_0 + p(1 - P_0))$$

$$H(Y|X) = (1 - P_0) h(p)$$

For capacity, maximize I(X;Y) over P_0

channel capacity: the erasure channel

Application: cdma detection



$$P(X=0) = P_0$$

$$I(X;Y) = H(X) - H(X|Y)$$

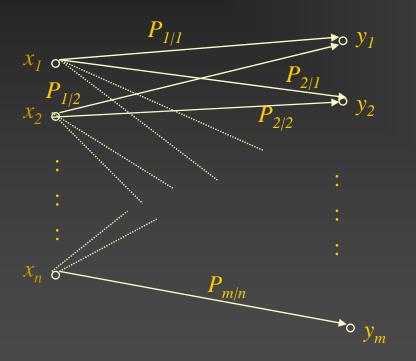
$$H(X) = h(P_0)$$

$$H(X|Y) = e h(P_0)$$

Thus
$$C_{\text{erasure}} = 1 - e$$

(check!, draw and compare with BSC and Z)

channel models: general diagram



Input alphabet $X = \{x_1, x_2, ..., x_n\}$ Output alphabet $Y = \{y_1, y_2, ..., y_m\}$ $P_{j/i} = P_{Y/X}(y_j|x_i)$

In general:

calculating capacity needs more
theory

clue:

I(X;Y)

is convex \cap in the input probabilities

i.e. finding a maximum is simple

Channel capacity

Definition:

The rate R of a code is the ratio $\frac{k}{n}$, where

k is the number of information bits transmitted in n channel uses

Shannon showed that::

for $R \leq C$

encoding methods exist

with decoding error probability \Rightarrow 0

System design



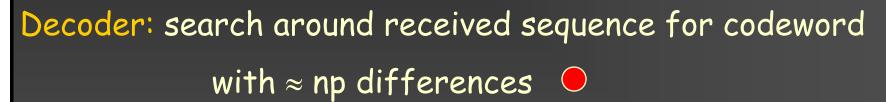
There are 2k code words of length n

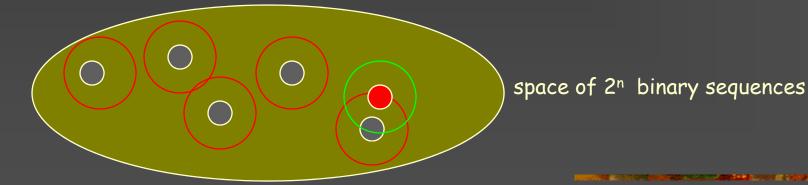
Channel capacity: sketch of proof for the BSC

Code: 2^k binary codewords where $p(0) = P(1) = \frac{1}{2}$

Channel errors: $P(0 \rightarrow 1) = P(1 \rightarrow 0) = p$

i.e. # error sequences $\approx 2^{nh(p)}$





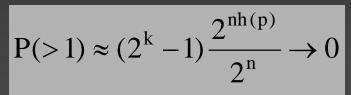
Channel capacity: decoding error probability

1. For t errors: $|t/n-p| > \epsilon$

$$\rightarrow$$
 0 for $n \rightarrow \infty$

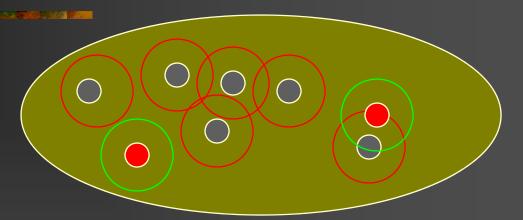
(law of large numbers)

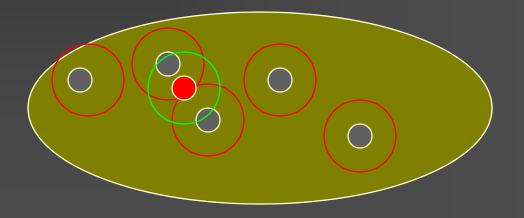
2. > 1 code word in region (codewords random)



for
$$R = \frac{k}{n} < 1 - h(p)$$

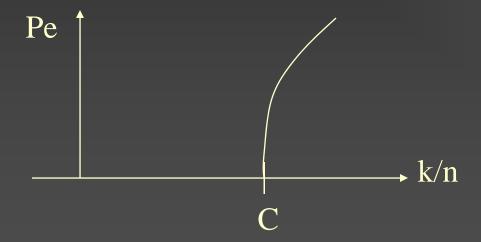
and $n \to \infty$



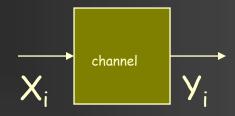


Channel capacity: converse

For R > C the decoding error probability > 0

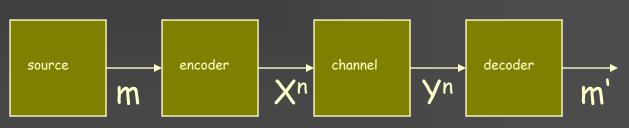


Converse: For a discrete memory less channel



$$I(X^{n};Y^{n}) = H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i} \mid X_{i}) \le \sum_{i=1}^{n} H(Y_{i}) - \sum_{i=1}^{n} H(Y_{i} \mid X_{i}) = \sum_{i=1}^{n} I(X_{i};Y_{i}) \le nC$$

Source generates one out of 2^k equiprobable messages



Let Pe = probability that m' ≠ m

converse R := k/n

$$k = H(M) = I(M;Y^n) + H(M|Y^n)$$

$$\leq I(X^n;Y^n) + 1 + k Pe$$

$$\leq nC + 1 + k Pe$$

$$1 - C n/k - 1/k \leq Pe$$

$$Pe \ge 1 - C/R - 1/k$$

Hence: for large k, and R > C,
the probability of error Pe > 0

Appendix:

Assume:

binary sequence P(0) = 1 - P(1) = 1 - P(1)

t is the # of 1's in the sequence

Then $n \to \infty$, $\epsilon > 0$

Weak law of large numbers

Probability ($|t/n-p| > \varepsilon$) $\rightarrow 0$

i.e. we expect with high probability pn 1's

Appendix:

Consequence:

1. $n(p-\epsilon) < t < n(p+\epsilon)$ with high probability

$$\log_2 \sum_{n(p-\epsilon)}^{n(p+\epsilon)} \binom{n}{t} \approx \log_2 (2n\epsilon \binom{n}{pn}) \approx \log_2 2n\epsilon + \log_2 2^{nh(p)}$$

$$\frac{1}{n}\log_2 2n\varepsilon + \frac{1}{n}\log_2 2^{nh(p)} \rightarrow h(p)$$

4. A sequence in this set has probability $\approx 2^{-nh(p)}$