Binary symmetric channel

content

- Introduction
- Entropy and some related properties
- Source coding
- Channel coding

■ Multi-user models

- Constraint sequence
- Applications to cryptography

This lecture

- Some models
- Channel capacity
- converse

some channel models

memoryless:

- output at time i depends only on input at time i
- input and output alphabet finite

channel capacity:

$$
I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \text { (Shannon 1948) }
$$

$$
\max _{\mathrm{P}(\mathrm{x})} \mathrm{I}(\mathrm{X} ; \mathrm{Y})=\text { capacity }
$$

notes:
capacity depends on input probabilities because the transition probabilites are fixed

channel model: binary symmetric channel

E is the binary error sequence s.t. $P(1)=1-P(0)=p$
X is the binary information sequence
Y is the binary output sequence

burst error model

Random error channel; outputs independen \dagger

$$
\text { Error Source } \longrightarrow P(0)=1-P(1) \text {; }
$$

Burst error channel; outputs dependent

$$
\begin{aligned}
& \text { Error Source } \longrightarrow \begin{array}{l}
\mathrm{P}(0 \mid \text { state }=\mathrm{bad})=\mathrm{P}(1 \mid \text { state }=\text { bad })=1 / 2 ; \\
\mathrm{P}(0 \mid \text { state }=\operatorname{good})=1-\mathrm{P}(1 \mid \text { state }=\operatorname{good})=0.999
\end{array}
\end{aligned}
$$

State info: good or bad
transition probability

Interleaving:

bursty

"random error"
Note: interleaving brings encoding and decoding delay

Homework: compare the block and convolutional interleaving w.r.t. delay

Interleaving: block

Channel models are difficult to derive:

- burst definition?
- random and burst errors ?
for practical reasons: convert burst into random error read in row wise

| 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | transmit column wise

De-Interleaving: block

read in column
wise
this row contains 1 error

read out row wise

Interleaving: convolutional

input sequence 0 input sequence 1 \longrightarrow delay of b elements
input sequence $m-1 \longrightarrow$ delay of $(m-1)$ b elements \longrightarrow

Class A Middleton channel model

Example: Middleton's class A

$$
\operatorname{Pr}\{\sigma=\sigma(k)\}=Q(k), k=0,1, \cdots
$$

$$
\sigma(\mathrm{k}):=\left(\frac{\mathrm{k} \sigma_{\mathrm{I}}^{2} / \mathrm{A}+\sigma_{\mathrm{G}}^{2}}{\sigma_{\mathrm{I}}^{2}+\sigma_{\mathrm{G}}^{2}}\right)^{1 / 2}
$$

$$
\mathrm{Q}(\mathrm{k}):=\frac{\mathrm{e}^{-\mathrm{A}} \mathrm{~A}^{\mathrm{k}}}{\mathrm{k}!}
$$

A is the impulsive index
σ_{I}^{2} and σ_{G}^{2} are the impulsive and Gaussian noise power

Example of parameters

- Middleton's class $A=1 ; \mathrm{E}=\boldsymbol{\sigma}=1 ; \sigma_{\mathrm{I}} / \sigma_{\mathrm{G}}=10^{-}$ 1.5

\mathbf{k}	$\mathbf{Q}(\mathbf{k})$	$\mathrm{p}(\mathrm{k})$ (= transition probability)
0	0.36	0.00
1	0.37	0.16
2	0.19	0.24
3	0.06	0.28
4	0.02	0.31
0.		
0.124;	Capacity $(B S C)=0.457$	

Example of parameters

Middleton's class A: $E=1 ; \sigma=1 ; \sigma_{\mathrm{I}} / \sigma_{G}=10^{-3}$

Example of parameters

Middleton's class A: $E=0.01 ; \sigma=1 ; \sigma_{I} / \sigma_{G}=10^{-3}$

$$
A=0.1
$$

$$
\mathrm{A}=1
$$

$$
A=10
$$

channel capacity: the BSC

$I(X: Y)=H(Y)-H(Y \mid X)$
the maximum of $H(Y)=1$
since Y is binary
$H(Y \mid X)=h(p)$
$=P(X=0) h(p)+P(X=1) h(p)$

Conclusion: the capacity for the $B S C C_{B S C}=1-h(p)$
Homework: draw $C_{B S C}$, what happens for $p>\frac{1}{2}$

channel capacity: the Z-channel

Application in optical communications

$$
\begin{aligned}
& \mathrm{H}(\mathrm{Y})=\mathrm{h}\left(\mathrm{P}_{0}+\mathrm{p}\left(1-\mathrm{P}_{0}\right)\right) \\
& \mathrm{H}(\mathrm{Y} \mid \mathrm{X})=\left(1-\mathrm{P}_{0}\right) \mathrm{h}(\mathrm{p}) \\
& \text { For capacity, } \\
& \quad \text { maximize } \mathrm{I}(\mathrm{X} ; \mathrm{Y}) \text { over } \mathrm{P}_{0}
\end{aligned}
$$

channel capacity: the erasure channel

Application: cdma detection

$$
\begin{aligned}
\mathrm{I}(\mathrm{X} ; \mathrm{Y})= & \mathrm{H}(\mathrm{X})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) \\
\mathrm{H}(\mathrm{X}) & =\mathrm{h}\left(\mathrm{P}_{0}\right) \\
\mathrm{H}(\mathrm{X} \mid \mathrm{Y}) & =\mathrm{eh}\left(\mathrm{P}_{0}\right)
\end{aligned}
$$

Thus $\mathrm{C}_{\text {erasure }}=1-\mathrm{e}$
(check!, draw and compare with BSC and Z)

channel models: general diagram

Input alphabet $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Output alphabet $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$
$P_{j / i}=P_{y / X}\left(y_{j} \mid x_{i}\right)$

In general:
calculating capacity needs more theory

clue:

$I(X ; Y)$

is convex \cap in the input probabilities
i.e. finding a maximum is simple

Channel capacity

Definition:

The rate R of a code is the ratio $\frac{k}{n}$, where
k is the number of information bits transmitted in n channel uses

Shannon showed that: :
for $R \leq C$
encoding methods exist with decoding error probability $\square 0$

System design

Code book

There are 2^{k} code words of length n

Channel capacity: sketch of proof for the BSC

Code: 2^{k} binary codewords where $p(0)=P(1)=\frac{1}{2}$
Channel errors: $P(0 \rightarrow 1)=P(1 \rightarrow 0)=p$
i.e. \# error sequences $\approx 2^{\text {nh(}}(\mathrm{p})$

Decoder: search around received sequence for codeword with $\approx n p$ differences O

Channel capacity: decoding error probability

1. For t errors: $|\dagger / n-p|>\epsilon$
$\rightarrow 0$ for $n \rightarrow \infty$
(law of large numbers)
2. > 1 code word in region
 (codewords random)

$$
\mathrm{P}(>1) \approx\left(2^{\mathrm{k}}-1\right) \frac{2^{\mathrm{nh}(\mathrm{p})}}{2^{\mathrm{n}}} \rightarrow 0
$$

for $\quad R=\frac{k}{n}<1-h(p)$
and

$$
n \rightarrow \infty
$$

Channel capacity: converse

For $R>C \quad$ the decoding error probability >0

Converse: For a discrete memory less channel

$$
I\left(X^{n} ; Y^{n}\right)=H\left(Y^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \leq \sum_{i=1}^{n} H\left(Y_{i}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \leq n C
$$

Source generates one out of 2^{k} equiprobable messages

Let $\mathrm{Pe}=$ probability that $\mathrm{m}^{\prime} \neq \mathrm{m}$

converse $\mathrm{R}:=\mathrm{k} / \mathrm{n}$

$$
\begin{aligned}
& k=H(M)=I\left(M ; Y^{n}\right)+H\left(M \mid Y^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq n C+1+k P e
\end{aligned}
$$

$P e \geq 1-C / R-1 / k$
Hence: for large k, and $R>C$,
the probability of error $\mathrm{Pe}>0$

Appendix:

Assume:

binary sequence $P(0)=1-P(1)=1-p$
t is the \# of 1 's in the sequence
Then $n \rightarrow \infty, \varepsilon>0$
Weak law of large numbers
Probability $(|t / n-p|>\varepsilon) \rightarrow 0$
i.e. we expect with high probability pn 1's

Appendix:

Consequence:

1. $n(p-\varepsilon)<t<n(p+\varepsilon)$ with high probability
2. $\quad \log _{2} \sum_{n(p-\varepsilon)}^{n(p+\varepsilon)}\binom{n}{t} \approx \log _{2}\left(2 n \varepsilon\binom{n}{p n}\right) \approx \log _{2} 2 n \varepsilon+\log _{2} 2^{\operatorname{nh}(p)}$
3.

$\frac{1}{\mathrm{n}} \log _{2} 2 \mathrm{n} \varepsilon+\frac{1}{\mathrm{n}} \log _{2} 2^{\mathrm{nh}(\mathrm{p})} \rightarrow \mathrm{h}(\mathrm{p})$
4.

A sequence in this set has probability $\approx 2^{-\operatorname{mh}(p)}$

